Higher-Dimensional Algebra II: 2-Hilbert Spaces

نویسنده

  • John C. Baez
چکیده

A 2-Hilbert space is a category with structures and properties analogous to those of a Hilbert space. More precisely, we deene a 2-Hilbert space to be an abelian category enriched over Hilb with a-structure, conjugate-linear on the hom-sets, satisfying hf g; hi = hg; f hi = hf; hg i. We also deene monoidal, braided monoidal, and symmetric monoidal versions of 2-Hilbert spaces, which we call 2-H*-algebras, braided 2-H*-algebras, and symmetric 2-H*-algebras, and we describe the relation between these and tangles in 2, 3, and 4 dimensions, respectively. We prove a generalized Doplicher-Roberts theorem stating that every symmetric 2-H*-algebra is equivalent to the category Rep(G) of continuous unitary nite-dimensional representations of some compact supergroupoid G. The equivalence is given by a categoriied version of the Gelfand transform; we also construct a categoriied version of the Fourier transform when G is a compact abelian group. Finally, we characterize Rep(G) by its universal properties when G is a compact classical group. For example, Rep(U(n)) is the free connected symmetric 2-H*-algebra on one even object of dimension n.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : q - a lg / 9 60 90 18 v 2 2 2 O ct 1 99 6 Higher - Dimensional Algebra II : 2 - Hilbert Spaces

A 2-Hilbert space is a category with structures and properties analogous to those of a Hilbert space. More precisely, we define a 2-Hilbert space to be an abelian category enriched over Hilb with a ∗-structure, conjugate-linear on the hom-sets, satisfying 〈fg, h〉 = 〈g, f∗h〉 = 〈f, hg∗〉. We also define monoidal, braided monoidal, and symmetric monoidal versions of 2-Hilbert spaces, which we call ...

متن کامل

Determination of subrepresentations of the standard higher dimensional shearlet group

‎This paper is devoted to definition standard higher dimension shearlet group $ mathbb{S} = mathbb{R}^{+} times mathbb {R}^{n-1} times mathbb {R}^{n} $ and determination of square integrable subrepresentations of this group‎. ‎Also we give a characterisation of admissible vectors associated to the Hilbert spaces corresponding to each su brepresentations‎.

متن کامل

Linear algebra and differential geometry on abstract Hilbert space

Isomorphisms of separable Hilbert spaces are analogous to isomorphisms of n-dimensional vector spaces. However, while n-dimensional spaces in applications are always realized as the Euclidean space Rn, Hilbert spaces admit various useful realizations as spaces of functions. In the paper this simple observation is used to construct a fruitful formalism of local coordinates on Hilbert manifolds. ...

متن کامل

The lattice of closed ideals in the Banach algebra of operators on certain Banach spaces

Very few Banach spaces E are known for which the lattice of closed ideals in the Banach algebra B(E) of all (bounded, linear) operators on E is fully understood. Indeed, up to now the only such Banach spaces are, up to isomorphism, Hilbert spaces and the sequence spaces c0 and `p for 1 6 p < ∞. We add a new member to this family by showing that there are exactly four closed ideals in B(E) for t...

متن کامل

Duals and approximate duals of g-frames in Hilbert spaces

In this paper we get some results and applications for duals and approximate duals of g-frames in Hilbert spaces. In particular, we consider the stability of duals and approximate duals under bounded operators and we study duals and approximate duals of g-frames in the direct sum of Hilbert spaces. We also obtain some results for perturbations of approximate duals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996